Predicting Crop Yields in the Southern Regions of Russia with Artificial Intelligence Tools
https://doi.org/10.26794/3033-7097-2025-1-4-76-85
Abstract
The article discusses modern approaches to predicting crop yields in the agricultural regions of southern Russia using artificial intelligence technologies (neural networks). The relevance of this topic is due to the high importance of the southern regions (Krasnodar Territory, Stavropol Territory, Rostov Region, etc.) in Russia’s food security, and the need for prompt and accurate crop forecasting. The purpose of this work is to develop, apply and evaluate models for predicting crop yields in southern Russia using artificial intelligence methods based on various types of neural networks. Methodology and tools of neural network algorithms application (LSTM, CNN, MLP) are considered to predict crop yields based on data from 2020 to 2025, including statistical indicators of crop yields, meteorological data, and vegetation indices (NDVI). The article presents the results of modeling, which demonstrate the advantage of the LSTM model in terms of prediction accuracy compared to other models. The results section includes graphs and tables that illustrate the actual and predicted crop yields, as well as a comparative analysis of the model errors.
About the Authors
S. V. ShaituraРоссия
Sergey V. Shaitura — Cand. Sci. (Tech.), Assoc. Prof. of the Department of Information Technologies and Control System
Korolev, Moscow Region
N. P. Semichevskaya
Россия
Nataliya P. Semichevskaya — Cand. Sci. (Tech.), Assoc. Prof., Assoc. Prof. of the Department of Information Systems and Digital Technologies
Moscow
N. S. Shaitura
Россия
Nataliya S. Shaitura — Cand. Sci. (Phys.-Math.), Senior Lecturer of the Higher Mathematics Department
Moscow
References
1. Lupyan E.A., Savin I. Yu., Bartalev S.A., Tolpin V.A., Balashov I.V., Plotnikov D.E. Satellite service for vegetation monitoring VEGA. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa [Modern Problems of Earth Remote Sensing from Space]. 2011;8(1):190–198. URL: https://elibrary.ru/nvvwbl (In Russ.).
2. Savin I. Yu., Bartalev S.A., Lupyan E.A., Tolpin V.A. Crop yields forecasting based on satellite data: opportunities and prospects. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa [Modern Problems of Earth Remote Sensing from Space]. 2010;7(3):275–285. URL: https://elibrary.ru/ncyazf (In Russ.).
3. Tarasov A.N., Isaeva O.V., Kholodova M.A. The agrarian sector of the south of Russia: current trends and development prospects. Rostov-on-Don: Azov-Print; 2020. 112 p. (In Russ.). DOI: 10.34924/FRARC.2020.45.18.001
4. Bartalev S.A., Lupyan E.A., Savin I. Yu. Remote Assessment of Agricultural Land Parameters Using MODIS Data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa [Modern Problems of Earth Remote Sensing from Space].2004;1(1):113–123. URL: https://elibrary.ru/ndpntl (In Russ.).
5. Eroshenko F.V., Bartalev S.A., Storchak I.G., Plotnikov D.E. The possibility of winter wheat yield estimation based on vegetation index of photosynthetic potential derived from remote sensing data. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa [Modern Problems of Earth Remote Sensing from Space]. 2016;13(4):99–112. (In Russ.). DOI: 10.21046/2070-7401-2016-13-23-99-112
6. Storchak I.G., Eroshenko F.V. Using of NDVI for assessing productivity of winter wheat in Stavropol region. Agriculture. 2014;7:12–15. URL: http://jurzemledelie.ru/arkhiv-nomerov/7-2014/662-ispolzovanie-ndvi-dlya-otsenki-produktivnosti-ozimoj-pshenitsy-v-stavropolskom-krae (In Russ.).
7. Hochreiter S., Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997;9(8):1735–1780. DOI: 10.1162/neco.1997.9.8.1735
8. Gers F., Schmidhuber J., Cummins F. Learning to Forget: Continual Prediction with LSTM. Neural Computation. 2000;12(10):2451-2471. DOI: 10.1162/089976600300015015
9. Karim F., Majumdar S., Darabi H., Chen S. LSTM Fully Convolutional Networks for Time Series Classification. IEEE Access. 2018;6:1662–1669. DOI: 10.1109/ACCESS.2017.2779939
10. Denisov P.V., Ivanov A.B., Mishurov N.P., Petukhov D.A., Podyablonskiy P.A. et al. Forecasting the yield of winter wheat using remote sensing technologies. Agricultural Risk Management. 2021;39:37–45. (In Russ.). DOI: 10.53988/24136573-2021-01-03
11. Bondur V.G., Gorokhovsky K. Yu., Ignatiev V. Yu., Murynin A.B., Gaponova E.V. Method of Yield Forecasting Based on Space Observations of Vegetation Dynamics. Izvestia Vuzov. Geodesy and Aerophotosurveying. 2013:6:61–68. URL: https://elibrary.ru/uiycwn (In Russ.).
12. Lupyan E.A., Bartalev S.A., Krasheninnikova Yu.S., Plotnikov D.E., Tolpin V.A. et al. VEGA satellite service applications in regional remote monitoring systems. Sovremennye Problemy Distantsionnogo Zondirovaniya Zemli iz Kosmosa [Modern Problems of Earth Remote Sensing from Space]. 2015;12(5):231–247. URL: https://elibrary.ru/thxydn (In Russ.).
13. Shaitura S.V., Gerasimov V.A. Data Mining Methods. Slavic Forum. 2022;4(38):421-429. URL: https://elibrary.ru/xwuxwa (In Russ.).
14. Shaitura S.V., Semichevskaya N.P., Belyu L.P. Analysis of the Processes of Digitalization of Socio-Economic Systems. Problems of Regional Economy. 2024;4(61):197–212. URL: https://elibrary.ru/jaeyhr (In Russ.).
15. Nikolaeva S.G., Semichevskaya N.P., Koshkina L. Yu. Big data analysis in economy: application and prospects. Economics and Management: Problems, Solutions. 2025;11(3)(156):188–192. (In Russ.). DOI: 10.36871/ek.up.p.r.2025.03.11.018
Review
For citations:
Shaitura S.V., Semichevskaya N.P., Shaitura N.S. Predicting Crop Yields in the Southern Regions of Russia with Artificial Intelligence Tools. Digital Solutions and Artificial Intelligence Technologies. 2025;1(4):76-85. (In Russ.) https://doi.org/10.26794/3033-7097-2025-1-4-76-85
JATS XML
