Benchmark of YOLO v8 with Lacmus dataset
Abstract
This research introduces a specialized Lacmus dataset designed for detecting missing persons in aerial photographs obtained from unmanned aerial vehicles (UAVs). The dataset comprises 1552 images with over 5000 annotated bounding boxes captured at five distinct locations characterized by grassy areas and sparse forests across different seasons. The primary objective of the study was to optimize the accuracy-performance ratio of YOLOv8 models based on the presented dataset. Experimental research has revealed that the best results were achieved using a medium-sized model with increased input image resolution without prior segmentation into smaller resolution images. The developed dataset and research results are intended for practical application in search and rescue operations, which could potentially enhance the efficiency of rescue missions and save human lives.
About the Authors
A. I. LabintsevRussian Federation
Andrey I. Labintsev - Cand. Sci (Tech.), Assoc. Professor at the Department of Artificial Intelligence, Faculty of Information Technology and Big Data Analysis; Leading Analyst at the Department of Strategic Projects
Moscow
E. I. Kublik
Russian Federation
Evgeny I. Kublik - Cand. Sci (Tech.), Assoc. Prof. at the Department of Information Technology, Faculty of Information Technology and Big Data Analysis
Moscow
G. P. Perevozchikov
Germany
Georgiy P. Perevozchikov - Researcher
Würzburg
R. A. Kоchkarov
Russian Federation
Rasul A. Kochkarov - Cand. Sci. (Econ.), Assoc. Prof. Department of Artificial Intelligence, Deputy Dean for Research at the Faculty of Information Technology and Big Data Analysis
Moscow
References
1. Herskovits A., Binford T. O. On boundary detection. 1970. URL: http://hdl.handle.net/1721.1/5867
2. Yakimovsky Y. Boundary and object detection in real world images. Journal of the ACM (JACM). 1976;23(4):599–618. DOI: 10.1145/321978.321981
3. Zou Z., Chen K., Shi Z., Guo Y., Ye J. Object detection in 20 years: A survey. Proceedings of the IEEE. 2023;111(3):257–276. DOI: 10.48550/arXiv.1905.05055
4. Carranza-García M., Torres-Mateo J., Lara-Benítez, P. García-Gutiérrez J., On the performance of one-stage and two-stage object detectors in autonomous vehicles using camera data. Remote Sensing. 2020;13(1):89. DOI: 10.3390/rs13010089
5. Shehzadi T., Hashmi K. A., Stricker D., Afzal M. Z. 2D Object Detection with Transformers: A Review. 2023. URL: https://www.researchgate.net/publication/371414252_2D_Object_Detection_with_Transformers_A_ Review. DOI: 10.48550/arXiv.2306.04670
6. Lin T. Y., Maire M., Belongie S. et al. Microsoft coco: Common objects in context. In Computer Vision — ECCV 2014: 13th European Conference, Zurich, Switzerland, Sept. 6–12, 2014. Proceedings, Springer International Publishing. 2014;3:740–755. URL: https://link.springer.com/book/10.1007/978–3–319–10602–1
7. Everingham M., Van Gool L., Williams C. K., Winn J. The pascal visual object classes (VOC) challenge. International journal of computer vision. 2010;88:303–338. DOI: 10.1007/s11263–009–0275–4
8. Zhu P., Wen L., Du D., Bian X. et al. Visdrone-det 2018: The vision meets drone object detection in image challenge results. In Computer Vision — ECCV 2018 Workshops. Lecture Notes in Computer Science. 2019:437–468. DOI: 10.1007/978–3–030–11021–5_27
9. Du D., Qi Y., Yu H., et al. The unmanned aerial vehicle benchmark: Object detection and tracking. In Proceedings of the European conference on computer vision (ECCV). 2018:370–386. DOI: 10.48550/arXiv.1804.00518
10. Varga L. A., Kiefer B., Messmer M., Zell A. Seadronessee: A maritime benchmark for detecting humans in open water. In Proceedings of the IEEE/CVF winter conference on applications of computer vision. 2022:2260–2270. DOI: 10.48550/arXiv.2105.01922
11. Božić-Štulić D., Marušić Ž. and Gotovac S. Deep learning approach in aerial imagery for supporting land search and rescue missions. International Journal of Computer Vision. 2019;127(9):1–23. DOI: 10.1007/s11263–019–01177–1
12. Broyles D., Hayner C. R., Leung K. Wisard: A labeled visual and thermal image dataset for wilderness search and rescue. In 2022 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS). 2022:9467–9474. DOI: 10.1109/IROS 47612.2022.9981298
13. Russell Bernal A. M., Scheirer W., Cleland-Huang J. NOMAD: A Natural, Occluded, Multi-scale Aerial Dataset, for Emergency Response Scenarios. In Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision. 2024:8584–8595. URL: https://openaccess.thecvf.com/content/WACV2024/papers/Bernal_NOMAD_A_Natural_Occluded_Multi-Scale_Aerial_Dataset_for_Emergency_Response_WACV_2024_paper.pdf. DOI: 10.48550/ arXiv.2309.09518
14. Sambolek S., Ivasic-Kos M., Person Detection and Geolocation Estimation in UAV Aerial Images: An Experimental Approach. In ICPRAM. SN Computer Science. 2025;6(4):785–792. DOI: 10.1007/s42979–025–03869–7
15. Akyon F. C., Altinuc S. O., Temizel A. Slicing aided hyper inference and fine-tuning for small object detection. In 2022 IEEE International Conference on Image Processing (ICIP). 2022:966–970. DOI: 10.1109/ICIP46576.2022.9897990
16. Amjoud A. B., Amrouch M. Object detection using deep learning, CNNs and vision transformers: A review. IEEE Access. 2023;11:35479–35516. DOI: 10.1109/ACCESS.2023.3266093
17. Zhang H., Hao C., Song W., Jiang B., Li B. Adaptive slicing-aided hyper inference for small object detection in highresolution remote sensing images. Remote Sensing. 2023;15(5):1249. DOI: 10.3390/rs15051249
18. Labintsev A. I., Dolmatov A. G. Fuzzy measurement of coordinates of small objects in high-resolution images. Soft measurements and calculations. 2022;52(3):36–42. DOI: 10.36871/2618–9976.2022.03.004
19. Redmon J., Divvala S., Girshick R., Farhadi A. You only look once: Unified, real-time object detection. In Proceedings of the Conference: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR). 2016. DOI: 10.1109/CVPR.2016.91
20. Hosang J., Benenson R., Schiele B. Learning non-maximum suppression. Proceedings of the IEEE conference on computer vision and pattern recognition. 2017:4507–4515. DOI: 10.1109/CVPR.2017.685
21. Li X., Wang W., Wu L., Chen S., et al. Generalized focal loss: Learning qualified and distributed bounding boxes for dense object detection. Advances in Neural Information Processing Systems. 2020;33:21002–21012. DOI: 10.48550/arXiv.2006.04388
Review
For citations:
Labintsev A.I., Kublik E.I., Perevozchikov G.P., Kоchkarov R.A. Benchmark of YOLO v8 with Lacmus dataset. Digital Solutions and Artificial Intelligence Technologies. 2025;1(2):32-43. (In Russ.)
