Detecting Cardiovascular Diseases by ECG Signal Using Machine-learning methods
Abstract
The problem of automatic diagnostic of diseases, in particular cardiovascular diseases by ECG signal (Electrocardiography). Goal. Improve diagnostic efficiency by using modern machine learning methods. Results. The results of the article review are presented in a systematic form, the most effective methods and approaches are highlighted, as well as their applicability to solving specific problems of diagnosing cardiovascular diseases. Based on the analysis of existing works, conclusions are made about the prospects of using machine learning methods in the field of diagnosis of cardiovascular diseases based on ECG data and suggest possible directions for future research in this field. Practical significance. The article highlights modern methods and approaches used in modern research aimed at automatic detection of cardiovascular diseases using ECG data.
About the Authors
A. D. AvramenkoRussian Federation
Alexander D. Avramenko - Postgraduate Student, Assistant, Department of Information Technology, Faculty of Information Technology and Big Data Analysis
Moscow
V. A. Sudakov
Russian Federation
Vladimir A. Sudakov - Dr. Sci. (Tech.), Assoc. Prof., Leading Researcher
Moscow
References
1. Butun E., Yildirim O., Talo M., Tan R. 1D-CADCapsNet: One dimensional deep capsule networks for coronary artery disease detection using ECG signals. Physica Medica. 2020;70:39–48 URL: https://www.sciencedirect.com/science/article/pii/S 1120179720300077. DOI: 10.1016/j.ejmp.2020.01.007
2. El Boujnouni I., Zili H., Tali A., Tali T., Laaziz Y. A wavelet-based capsule neural network for ECG biometric identification. Biomedical Signal Processing and Control. 2022;76:103692. URL: https://www.sciencedirect.com/science/article/pii/S 1746809422002142 DOI: 10.1016/j.bspc.2022.103692
3. El Boujnouni I., Harouchi B., Tali A., Rachafi S., Laaziz Y. Automatic diagnosis of cardiovascular diseases using wavelet feature extraction and convolutional capsule network. Biomedical Signal Processing and Control. 2023;81:104497. URL: https://www.sciencedirect.com/science/article/pii/S 174680942200951X DOI: 10.1016/j.bspc.2022.104497
4. Sonawane R., Patil H. Automated heart disease prediction model by hybrid heuristic-based feature optimization and enhanced clustering. Biomedical Signal Processing and Control. 2022;72:103260. URL: https://www.sciencedirect.com/science/article/abs/pii/S 0925231221005270 DOI: 10.1016/j.bspc.2021.103260
5. Li C., Wang B., Zhang S., Liu Y., Song R., Cheng J., Chen X. Emotion recognition from EEG based on multi-task learning with capsule network and attention mechanism. Computers in Biology and Medicine. 2022;143:105303. URL: https://www.sciencedirect.com/science/article/pii/S 0010482522000956 DOI: 10.1016/j.compbiomed.2022.105303
6. Wei Y., Liu Y., Li C., Cheng J., Song R., Chen X. TC-Net: A Transformer Capsule Network for EEG-based emotion recognition. Computers in Biology and Medicine. 2023;152:106463. URL: https://www.sciencedirect.com/science/article/pii/S 0010482522011714 DOI: 10.1016/j.compbiomed.2022.106463
7. Zhou J., Chu S., Li X., Xiao F., Sun L. An EEG emotion recognition method based on transfer learning and echo state network for HilCPS. Microprocessors and Microsystems. 2021;87:103381. URL: https://www.sciencedirect.com/science/article/pii/S 0141933120305391 DOI: 10.1016/j.micpro.2020.103381.
8. Hou F., Gao Q., Song Y., Wang Z., Bai Z., Yang Y., Tian Z. Deep feature pyramid network for EEG emotion recognition. Measurement. 2022;201:111724. URL: https://www.sciencedirect.com/science/article/pii/S 0263224122009290 DOI: 10.1016/j.measurement.2022.111724
9. Hu J., Wang C., Jia Q., Bu Q., Sutcliffe R., Feng J. ScalingNet: Extracting features from raw EEG data for emotion recognition. Neurocomputing. 2021;463:177–184. URL: https://www.sciencedirect.com/science/article/pii/S 0925231221012029 DOI: 10.1016/j.neucom.2021.08.018
10. Dong H., Chen D., Zhang L., Ke H., Li X. Subject sensitive EEG discrimination with fast reconstructable CNN driven by reinforcement learning: A case study of ASD evaluation. Neurocomputing. 2021;449:136–145. URL: https://www.sciencedirect.com/science/article/pii/S 0925231221005270 DOI: 10.1016/j.neucom.2021.04.009
11. Liang P., Deng C., Yuan X., Zhang L. A deep capsule neural network with data augmentation generative adversarial networks for single and simultaneous fault diagnosis of wind turbine gearbox. ISA Transactions. 2022. URL: https://www.sciencedirect.com/science/article/pii/S 0019057822005365 DOI: 10.1016/j.isatra.2022.10.008
12. Zhang Q., Li J., Ding W., Ye Z., Meng Z. Mechanical fault intelligent diagnosis using attention-based dualscale feature fusion capsule network. Measurement. 2023;207:112345. URL: https://www.sciencedirect.com/science/article/pii/S 026322412201541X DOI: 10.1016/j.measurement.2022.112345
13. Liu J., Zhang C., Jiang X. Imbalanced fault diagnosis of rolling bearing using improved MsR-GAN and feature enhancement-driven CapsNet. Mechanical Systems and Signal Processing. 2022;168:108664. URL: https://www.sciencedirect.com/science/article/pii/S 0888327021009882 DOI: 10.1016/j.ymssp.2021.108664
Review
For citations:
Avramenko A.D., Sudakov V.A. Detecting Cardiovascular Diseases by ECG Signal Using Machine-learning methods. Digital Solutions and Artificial Intelligence Technologies. 2025;1(2):26-31. (In Russ.)
