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аннотаЦИя
в статье рассматриваются современные подходы к прогнозированию урожайности сельскохозяйственных культур 
в аграрных регионах юга России с использованием технологий искусственного интеллекта (нейронных сетей). Ак-
туальность темы обусловлена высокой значимостью южных регионов (Краснодарский и Ставропольский края, Ро-
стовская область и др.) в продовольственной безопасности России и необходимостью оперативного и точного про-
гнозирования урожая. Цель данной работы — разработать, применить и сделать оценку моделей прогнозирования 
урожайности сельскохозяйственных культур на юге России с использованием методов искусственного интеллекта, 
основанных на нейронных сетях различного типа. Рассмотрены методология и инструментарий применения нейро-
сетевых алгоритмов (LSTM, CNN, MLP) для прогнозирования урожайности на основе данных 2020–2025 гг., включая 
статистические показатели урожайности, метеорологические данные и индексы растительности (NDVI). Представле-
ны результаты моделирования, демонстрирующие преимущество LSTM-модели по точности прогноза по сравнению 
с другими моделями. Приведены графики и таблицы, иллюстрирующие фактическую и прогнозируемую урожай-
ность, а также сравнительный анализ ошибок моделей. Проведена оценка результатов — сравнительная точность и 
ошибки прогнозов различных моделей. Рассмотрены ограничения проведенного исследования, к которым относятся 
непредставительность контрольных выборок, а также несовершенство системы сбора статистической информации. 
В связи с этим предложены направления дальнейших исследований, таких как расширение объема данных, обра-
ботка и подготовка данных к анализу, использование гибридных моделей, улучшение интерпретируемости моделей.
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нейронная сеть; карта нормализованного вегетационного индекса; рекуррентная нейронная сеть

Для цитирования: шайтура с.в., семичевская н.П., шайтура н.с. Прогнозирование урожайности в регионах юга 
России с использованием инструментов искусственного интеллекта. Цифровые решения и технологии искусственного 
интеллекта. 2025;1(4):76-85. Doi: 10.26794/3033-7097-2025-1-4-76-85

original paper

predicting crop yields in the Southern regions of russia 
with artificial intelligence tools

S.V. Shaituraa, n.p. Semichevskayab, n.S. Shaiturac

a Leonov University of Technology, Korolev, Moscow Region, Russian Federation;
b K.G. Razumovsky Moscow State University of Technologies and Management, Moscow, Russian Federation;
c Russian State Agrarian University — Moscow Timiryazev Agricultural Academy, Moscow, Russian Federation

abStract
the article discusses modern approaches to predicting crop yields in the agricultural regions of southern Russia 
using artificial intelligence technologies (neural networks). The relevance of this topic is due to the high importance 
of the southern regions (Krasnodar Territory, Stavropol Territory, Rostov Region, etc.) in Russia’s food security, and the 
need for prompt and accurate crop forecasting. the purpose of this work is to develop, apply and evaluate models for 
predicting crop yields in southern Russia using artificial intelligence methods based on various types of neural networks. 
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введенИе
Прогнозирование урожайности сельскохозяйст-
венных культур является одной из ключевых задач 
аграрного сектора, особенно для регионов с интен-
сивным земледелием, таких как юг России.

Ростовская область, Краснодарский и Ставро-
польский края традиционно занимают лидирующие 
позиции по производству зерновых культур (пше-
ница, рожь, ячмень, овес) и являются важнейшей 
компонентой продовольственной безопасности 
страны. От точности прогнозов урожая в этих ре-
гионах зависит планирование продовольственных 
ресурсов, экспортного потенциала и ценовой ста-
бильности.

Решение задачи прогнозирования урожайности 
культур может потенциально повысить саму уро-
жайность за счет выполнения следующих меропри-
ятий в сельскохозяйственных регионах:

•  определение состояния растений, которое ви-
зуально незаметно, применяя аппаратные методы 
визуализации;

•  выделение проблемных участков уже на ран-
них этапах вегетации путем применения методов 
компьютерного зрения и аэрофотосъемки;

•  планирование методов обработки посевов 
(пересева, дополнительной подпитки);

•  контроль появления сорных растений сразу 
после проведения посева, так как сорняки активнее 
набирают массу и хорошо отображаются в спектре;

•  установление растений, которые возделы-
вались в данном месте в предыдущие периоды 
и какие растут сейчас;

•  точечное применение фосфорных, калий-
ных и азотных удобрений на основе определения 
проблемных зон посредством индексов вегетации 
и последующего забора почвы на анализ;

•  своевременная идентификация болезней 
и вредителей в период, когда повреждения еще 
не заметны визуально, путем применения методов 
распознавания и компьютерной идентификации.

Актуальность применения искусственного ин-
теллекта и нейросетевых технологий для решения 
задачи прогнозирования урожайности обусловлена 
несколькими факторами. Во-первых, традиционные 

методы прогнозирования (агрометеорологические 
и статистические модели) не всегда обеспечивают 
требуемую точность и оперативность. Математиче-
ские модели, построенные на нейросетевых алго-
ритмах, способны выявлять скрытые нелинейные 
зависимости между урожайностью и множеством 
влияющих факторов (погодные условия, агротех-
нологии, состояние посевов и др.), что повышает 
точность прогнозов [1–3]. Во-вторых, последние 
годы характеризуются бурным развитием цифровых 
технологий в сельском хозяйстве —  от спутникового 
мониторинга полей до систем точного земледелия, 
что обеспечивает приток высокочастотных и де-
тализированных пространственных данных [4–6].

Цель данной работы заключается в разработке 
модели прогнозирования урожайности сельскохо-
зяйственных культур на юге России с использова-
нием методов искусственного интеллекта, осно-
ванных на нейронных сетях различного типа. Для 
достижения цели решены задачи: сбор и подготовка 
данных по урожайности в регионах юга России 
за 2020–2025 гг.; разработка моделей (MLP, CNN, 
LSTM); обучение и тестирование на актуальных, 
фактических данных; сравнение точности и оши-
бок; анализ преимуществ и ограничений подходов; 
формулировка рекомендаций.

Методы Искусственного 
Интеллекта в ИсследованИИ 

ПРогноЗИРованИя уРожайностИ
В данном исследовании применялся комплекс ме-
тодов искусственного интеллекта, главным образом 
различные архитектуры искусственных нейронных 
сетей.

1. Многослойный перцептрон (MLP) —  это класс 
искусственных нейронных сетей прямого распро-
странения. В исследовании на нейронной сети по-
строена модель, имитирующая зависимость уро-
жайности от набора признаков. MLP как минимум 
состоит из трех слоев. Конфигурация сети MLP: два 
скрытых слоя по 32 нейрона, ReLU, выход с линей-
ной активацией; оптимизация —  Adam; функция 
потерь —  MSE. Модель обучалась на исторических 
данных 2020–2024 гг. и служила базовым нейросе-

Methodology and tools of neural network algorithms application (LSTM, CNN, MLP) are considered to predict crop yields 
based on data from 2020 to 2025, including statistical indicators of crop yields, meteorological data, and vegetation 
indices (NDVI). the article presents the results of modeling, which demonstrate the advantage of the LSTM model in 
terms of prediction accuracy compared to other models. The results section includes graphs and tables that illustrate the 
actual and predicted crop yields, as well as a comparative analysis of the model errors.
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тевым бенчмарком. Многослойный перцептрон яв-
ляется популярным инструментом анализа данных 
и входит в платформы для бизнес-аналитики [13].

2. Сверточная нейронная сеть (CNN) —  специ-
ализированный тип глубоких нейронных сетей, 
предназначенных для эффективного распознавания 
образов, данная сеть входит в технологию глубокого 
обучения. Сеть CNN в исследовании применена для 
анализа пространственных данных, а именно дан-
ных на картах нормализованного вегетационного 
индекса (NDVI). Архитектура сети CNN: несколько 
сверточных слоев (ядро 3×3) с пулингом, затем 
полносвязный блок для регрессии урожайности. 
CNN обучалась на парах «спутниковое изображение 
участка —  фактическая урожайность» [3–7].

3. Рекуррентная сеть LSTM —  специализиро-
ванный тип рекуррентной нейронной сети RNN, 
используемой для запоминания и обработки дол-
госрочных зависимостей в последовательностях 
данных временной динамики. В исследовании 
рекуррентная сеть LSTM использовалась для ана-
лиза временной динамики по последовательности 
NDVI и собранных данных по метеопоказателям 
в течение сезона [5]. Архитектура сети LSTM: два 
LSTM-слоя (50 и 20 ячеек) и выходной плотный 
слой; оптимизатор —  Adam; функция потерь —  MSE. 
LSTM использует механизмы памяти для выделения 
существенных межфазовых закономерностей роста 
сельскохозяйственной культуры [7–10].

В качестве дополнительных сравнительных ме-
тодов для анализа прогнозных значений исполь-
зовалась полиномиальная регрессионная модель, 
для построения которой были собраны статисти-
ческие данные из официальных статистических 
источников.

Для предотвращения переобучения применялись 
кросс-валидация по годам, регуляризация (dropout 
0,2; L2), ранняя остановка. Качество оценивали по 
RMSE, MAPE и R². Предварительная нормализация 
и отбор признаков выполнены на основе анализа 
корреляций и важности (в том числе SHAP для MLP).

областЬ ИсследованИя
Областью исследования являются аграрные ре-
гионы юга Российской Федерации: Республики 
Адыгея, Калмыкия, Крым, Краснодарский край, 
Астраханская, Волгоградская и Ростовская обла-
сти и город Севастополь. Для проведения анали-
за урожайности были выбраны южные регионы 
(Краснодарский и Ставропольский края, Ростов-
ская область). Для этих регионов характерен уме-
ренно континентальный климат с мягкой зимой 
и теплым продолжительным летом; при годовых 
осадках 400–700 мм доминируют весенне-летние. 

Почвенно-ландшафтный фонд представлен высо-
коплодородными черноземами, что определяет 
высокий потенциальный уровень урожайности. 
Структура посевов включала озимую пшеницу 
(как индикаторную культуру), ячмень, кукурузу, 
подсолнечник, сахарную свеклу. Период анализа 
2020–2025 гг. охватывает годы с различными по-
годными режимами, что важно для устойчивого 
обучения моделей и получения прогнозных зна-
чений на 2025 г. [3–6].

сбоР данных об уРожайностИ 
кулЬтуР

Опишем систему сбора и обработки данных об 
урожайности культур, так как от нее зависит ка-
чество всей системы прогнозирования урожай-
ности в южных регионах Российской Федерации. 
Структура Южного федерального округа пред-
ставлена тремя республиками, тремя областями, 
одним краем и одним городом федерального зна-
чения. Для исследования урожайности сельскохо-
зяйственных культур выбирались данные по трем 
объектам: Краснодарский край, Ставропольский 
край, Ростовская область.

Инструментальными средствами сбора статисти-
ческих данных послужили статистические данные 
по урожайности сельскохозяйственных культур 
в сельскохозяйственных организациях Южного 
федерального округа по указанным объектам.

По данным сформированы следующие группы 
данных (выборки).

• Статистические показатели урожайности куль-
тур по регионам за 2020–2024 гг. (ц/га), предвари-
тельные данные за 2025 г. прогнозировались мето-
дом полиномиальной регрессии (рис. 1); валовые 
сборы использовались для контроля. Эти данные 
выступали целевыми переменными.

• Метеорологические данные: месячные и сезон-
ные суммы осадков, средние температуры, сумма 
активных температур (>+10 °C), индикаторы экс-
тремальных явлений. Агрегация по региону.

• Дистанционное зондирование: индексы NDVI 
(и доп. EVI/VHI) по данным Sentinel-2/MODIS; рас-
считаны среднемесячные ряды и интегральные 
показатели (максимум NDVI за сезон, площадь под 
кривой NDVI). Использовались готовые продукты 
и расчеты в специализированных сервисах спутни-
кового мониторинга («ВЕГА» и др.) [1, 4, 5, 10–12].

• Агротехнические факторы: индикаторы оро-
шения, приблизительные оценки применения удо-
брений, доли элитных семян, предшественники 
(на региональном уровне —  укрупненно) [13–15].

Для расширения выборки применено синтетиче-
ское моделирование сценариев погодных комбина-
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ций с эмпирическим откликом урожайности; затем 
дообучение на фактических данных 2020–2024 гг. 
Все количественные признаки нормированы; ка-
тегориальные (регионы) закодированы.

Результаты прогноза урожайности культур на 
2025 г. по регрессионной модели представлены 
на рис. 1.

ПРогРаММное обесПеченИе 
И ИнстРуМенты

Для реализации исследования использовалось 
специальное программное обеспечение и ком-
плекс технических средств.

Индекс NDVI (Normalized Difference Vegetation 
Index) —  нормализованный относительный индекс 
растительности, он определяется как количест-
венный показатель фотосинтетически активной 
биомассы на участке поверхности Земли. Индекс 
рассчитывается на основе данных спутниковых 
фотоснимков или аэрофотоснимков, полученных 
с беспилотных аппаратов [1, 2, 4, 5].

Карта NDVI может быть получена с помощью 
следующих видео- и фотооборудования: фотоап-
парат, БВС «Альбатрос М», геодезическое GNSS 
оборудование, мультиспектральная камера для 
получения нормализованного вегетационного ин-
декса NDVI. В результате имеем визуальную карту 
местности, карту с индексом NDVI и детальный 

ортофотоплан полей, что позволяет дать качест-
венный прогноз с диапазоном отклонений от фак-
тических данных от 4 до 20%. Показатели предо-
ставляются с географической точечной привязкой, 
выполненной в формате KMZ, geoTIF или в других 
форматах SHP, JPG. Методика расчетов индекса 
NDVI позволяет определить состояние посевов на 
местности со сложным рельефом и присутствием 
объектов природного и неприродного происхож-
дения, причем четко определяются искусственные 
материалы (асфальт, бетон), а также естественные 
водные источники, участки со снежным покровом, 
разряженных растений и незасеянные почвенные 
участки. Используются программы по распознава-
нию объектов на фотоснимках. Пример полученных 
и обработанных изображений с визуализацией 
засеянных полей представлен на рис. 2.

Используются библиотеки на языке программи-
рования Python: NumPy —  библиотека для работы 
с массивами большой размерности, с помощью 
этой библиотеки обрабатываются статистические 
данные по урожайности культур; Pandas —  про-
граммная библиотека для обработки и анализа 
структурированных наборов данных (панельных 
данных), сформированных как многомерные масси-
вы; Matplotlib —  библиотека для работы с графикой, 
подключение которой позволяет визуализировать 
анализ данных; geodata-стек для обработки гео-

Рис. 1 / Fig. 1. Фактическая и прогнозируемая урожайность культур (2020–2024 гг.), ц/га /  
actual and predicted crop yields of agricultural culture (2020–2024 гг.)
Источник / Source: составлено авторами / Complied by the authors.
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данных (rasterio/GDAL —  инструмент для создания 
нейросетей, для геопространственной обработки 
данных, GeoPandas —  библиотека для работы с про-
странственными данными); фреймворки глубин-
ного обучения Tensor Flow/Keras предоставляют 
мощные инструменты для создания и обучения 
нейронных сетей, выполнения различных задач 
машинного обучения и PyTorch —  фреймворк для 
глубинного обучения, при котором используются 
многослойные обучаемые модели и нейронные 
сети. При проведении эксперимента использованы 
random_state —  генератор случайных чисел в алго-
ритмах машинного обучения и MLflow —  платформа 
для управления жизненным циклом машинного 
обучения, которая регистрирует параметры, ме-
трики и артефакты проводимого эксперимента, 
включая random_state.

Программная реализация нейронных сетей вы-
полнена на языке Python с использованием следу-
ющих библиотек и инструментов NumPy, Pandas, 
Matplotlib, geodata-стек (rasterio/GDAL, GeoPandas), 

фреймворки глубинного обучения TensorFlow/Keras 
и PyTorch. Для репликации экспериментов исполь-
зованы фиксированные random_state и MLflow для 
логирования метрик и артефактов. Спутниковые 
данные агрегировались через Earth Engine и про-
фильные отечественные сервисы («ВЕГА»). Допол-
нительно для сравнительного анализа классических 
моделей временных рядов использовался пакет R 
(пакет forecast).

учет ФактоРов,  
влИяЮЩИх на РеЗулЬтаты

В модель включены агрометеорологические по-
казатели (осадки и температура по месяцам/се-
зонно), дистанционные индексы (максимальный 
NDVI, интегральный NDVI, фенологические харак-
теристики), региональные эффекты (категориаль-
ный признак), ориентиры агротехники (уровень 
внесения удобрений, орошение). Анализ точно-
сти алгоритмов проводился алгоритмом машин-
ного обучения Random Forest и SHAP для MLP, что 
показало доминирование NDVI (пик и интеграл), 
суммы осадков июня–июля, средней температу-
ры июня и индикатора сдвига фенологий (ранняя/
поздняя весна). Для частичной интерпретируе-
мости модели LSTM визуализирован вклад вре-
менных шагов: максимальная чувствительность 
к NDVI мая–июня и к осадкам в июне. Признаки 
масштабированы, высоко коррелирующие агре-
гированы. Учтены риски аномалий (град, вспыш-
ки болезней) —  частично отражаются в динамике 
NDVI, но требуют дальнейшей интеграции фито-
санитарных данных [7–12].

РеЗулЬтаты ПРогноЗИРованИя
Сравнение фактической и прогнозной урожайно-
сти культур по регионам показало, что все нейро-
сетевые модели улавливают межгодовую динами-
ку, но с варьируемой точностью. Наиболее точные 
оценки продемонстрировала модель LSTM, осо-
бенно при раннем прогнозировании (за 1,5–2 ме-
сяца до уборки ошибка возрастала лишь умерен-
но). Графическое сопоставление (рис. 3) иллю-
стрирует, что модель LSTM лучше воспроизводит 
экстремумы (низкая урожайность 2020 г., высокий 
уровень 2021 г.), тогда как перцептрон MLP скло-
нен к сглаживанию.

Для оценки точности прогноза использовались 
такие показатели, как: RMSE —  среднеквадратиче-
ская ошибка, MAPE —  средняя абсолютная процен-
тная ошибка между предсказанными и фактически-
ми значениями и коэффициент детерминации R 2 —  
статистическая мера соответствия регрессионной 
модели фактическим данным. Анализ позволяет 

Рис. 2 / Fig. 2. графическая интерпретация данных 
об урожайности культур на картах nDVi /  
graphical interpretation of agricultural culture crop 
yields Data on nDVi maps
Источник / Source: карты NDVI. ООО «Альбатрос».  / NDVI Maps. 

Albatros. URL: https://www.alb.aero/services/karta-ndvi/
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установить статистическую значимость математи-
ческих моделей искусственного интеллекта.

Количественные метрики приведены в таблице:
•  модель LSTM показала RMSE ≈ 2,5  ц/га, 

MAPE ≈ 5,5%, R² ≈ 0,92;
•  модель CNN —  RMSE ≈ 3,0 ц/га, MAPE ≈ 6%, 

R² ≈ 0,89;
•  модель MLP —  RMSE ≈ 3,5 ц/га, MAPE ≈ 7,5%, 

R² ≈ 0,85;
•  для линейной регрессии RMSE ≈ 5  ц/га, 

MAPE ≈ 10,5%, R² ≈ 0,75;
•  для полиномиальной регрессионной модели 

RMSE ≈ 4,5 ц/га, MAPE ≈ 10,0%, R² ≈ 0,79.
Это соответствует представлениям о превосход-

стве рекуррентных архитектур в задачах временных 
рядов, т. е. рекуррентная сеть LSTM, используемая 
как модель для запоминания и обработки долго-
срочных зависимостей в последовательностях дан-
ных временной динамики по последовательности 
NDVI и собранных данных по метеорологическим 
показателям в течение сезона, показала наиболее 
точный прогноз урожайности культур [7–9].

Ключевые аналитические выводы:
1) индекс NDVI в период выхода в трубку —  ко-

лошение зерна является сильнейшим индикатором 
будущей урожайности культур;

2) сумма осадков в июне–июле критически вли-
яет на налив зерна;

3) существуют значимые региональные эффекты 
(при прочих равных по Краснодарскому краю про-
гнозы выше, чем в Ростовской области, что отражает 
различия в почвенно-агротехнической базе);

4) по индексу NDVI выделяются проблемные 
участки уже на ранних этапах вегетации в южных 
регионах;

5) прогнозирование неурожайных ситуаций воз-
можно уже по состоянию на конец мая при резком 
отставании NDVI от многолетней нормы.

Сравнительные метрики моделей полиноми-
альной регрессии и нейросетей MLP, CNN, LSTM 
показаны в таблице.

Полученные количественные метрики отражают 
в большей степени точность прогнозирования уро-
жайности культур и никак не показывают ключевые 
особенности каждой построенной модели нейрон-
ных сетей, не дают точную оценку по архитектуре 
нейронной сети. Полиномиальная регрессионная 
модель была построена на основе статистических 
данных об урожайности за период 2020–2024 гг. 
в трех южных регионах России (Краснодарский 
край, Ставропольский край, Ростовская область). 
При построении моделей нейронных сетей ис-
пользовался многофакторный анализ данных по 
следующим показателям: урожайность в регио-
нах, метеорологические показатели, полученные 
индексы NDVI путем дистанционного зондирова-

Рис. 3 / Fig. 3. Фактическая и прогнозируемая урожайность культур (2020–2024 гг.) на моделях 
нейросетей mlp, cnn, lStm, ц/га / actual and predicted agricultural culture (2020–2024) based  
on neural network models mlp, cnn, lStm, с/ha
Источник / Source: составлено авторами / Complied by authors.
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ния и индикаторы по агротехническим факторам, 
влияющим на урожайность (индикаторы орошения, 
оценки применения удобрений, доли элитных се-
мян, предшественники). Применение аппарата 
нейронных сетей позволило увеличить точность 
прогнозных моделей и выделить лучшую из трех 
моделей нейронных сетей.

обсуж денИе  
Полученных РеЗулЬтатов

При получении результатов были учтены основ-
ные ограничения: 1) умеренный объем данных 
по урожайности сельскохозяйственных культур 
(2020–2025 гг., три региона) и частичная неодно-
родность источников; 2) неполный учет биотиче-
ских факторов (болезни, вредители); 3) локаль-
ность моделей (адаптация под юг России); 4) огра-
ниченная интерпретируемость. Можно выделить 
следующие направления развития: расширение 
временных рядов, т. е. увеличение временных 
диапазонов исследования урожайности культур; 
увеличение зон исследования и пространственно-
го охвата; применение в дальнейшем гибридных 
нейросетевых архитектур (Conv LSTM, трансфор-
меры), ансамблирование нейросетевых моделей 
CNN (перцептрон) и LSTM (сверточная сеть); ин-
теграция в модели данных фитосанитарного мо-
ниторинга; внедрение оценок неопределенности 

за счет построения статистических моделей (байе-
совские сети); использование пилотных облачных 
сервисов для хозяйств с регулярным обновлением 
прогноза.

Экономический эффект от внедрения автома-
тизированных систем прогнозирования на базе 
ИИ проявляется через оптимизацию процессов 
планирования, снижение рисков и повышение эф-
фективности использования ресурсов в сельскохо-
зяйственной деятельности [3–6, 13–15].

выводы
Сравнительный анализ показателей оценочных 
метрик качества прогнозных моделей выявил стати-
стически значимое преимущество модели LSTM над 
MLP (по критерию Вилкоксона сдвиг показателей 
одной модели более интенсивный, чем в другой 
модели, по парным ошибкам p < 0,05) и умеренное 
преимущество CNN над MLP. Интерпретируемость 
нейросетей обеспечивается частично (SHAP, анализ 
временных вкладов), однако для производственного 
внедрения предпочтительна интеграция модулей 
XAI. Стабильность результатов подтверждена те-
стами на независимых годах (2024 г.). Практическая 
значимость ошибки порядка 5–6% оценивается 
как достаточная для управленческих решений по 
логистике и страхованию урожая, превосходящая 
точность классических подходов [1–3, 7–13].
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