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abStract
Superplastic forming is an advanced technology used in the aerospace and automotive industries, as well as in the medical 
sector, for fabricating complex seamless components. However, its application is limited by high costs and the extended 
duration of the process. While finite element analysis in CAE systems such as ANSYS provides accurate results, it is 
computationally expensive. While finite element analysis performed in CAE systems such as ANSYS provides high-fidelity 
results, its computational expense creates a need for fast and accurate predictive models capable of supplementing or 
replacing this approach in multi-criteria analysis tasks. Despite the increasing adoption of machine learning across various 
disciplines, the development of reliable predictive models for specific geometric characteristics of superplastically formed 
components remains an understudied research area. the purpose of this study is to develop and verify a Gaussian process 
based model for predicting key geometric parameters of a hemisphere during the superplastic forming. An additional 
objective was to create an initial dataset using data generated from numerical simulations. The Latin Hypercube Sampling 
method was employed to design the experiment and generate the initial dataset, enabling efficient variation of material 
parameters K, m and pressure regime within ranges typical for aluminum alloys. Based on data from 50 numerical simulations, 
a predictive model for the hemisphere’s geometric characteristics was developed with Gaussian Process Regression with 
a composite kernel. Model hyperparameter optimization was performed using RandomizedSearchCV. The developed 
Gaussian Process Regression model demonstrated high accuracy, achieving a coefficient of determination greater than 
0.90 on the validation set for all target variables: thickness at the pole, average height, and height difference. Analysis of 
the Mean Squared Error confirmed the models generalization capability and absence of overfitting. this research is aimed 
at integrating the model into a digital twin system for real-time optimization of process parameters. The main challenge 
in scaling this approach is the computational cost associated with generating the required training data.
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гауссовская регрессия для прогнозирования 
геометрии изделия по данным cae-моделирования
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аннотаЦИя
Для создания сложных бесшовных деталей в аэрокосмической промышленности, автомобилестроении и медицине 
перспективной технологией является сверхпластическая формовка. Однако применение технологии ограничено высокой 
стоимостью и длительностью технологического процесса. Применение конечно-элементного моделирования в CAE-
системах типа ANSYS дает точный результат, но вычислительно затратное, потому возникает потребность в быстрых 
и точных моделях прогнозирования, способных заменить или дополнить данный метод в задачах многокритериаль-
ного анализа. Несмотря на растущее применение машинного обучения в различных областях, построение надежных 
моделей прогнозирования для конкретных геометрических характеристик деталей, полученных в результате сверх-
пластической формовки, остается малоизученным. Целью данного исследования является разработка и верификация 
модели прогнозирования на основе гауссовского процесса для предсказания ключевых геометрических параметров 
полусферы, получаемой в процессе сверхпластической формовки. Дополнительная задача состояла в создании ис-
ходного набора данных на основе результатов численного моделирования. Для формирования исходного набора 
данных использовался метод выборки латинского гиперкуба, позволивший эффективно варьировать параметры 
материала K, m и режим давления в типичных для алюминиевых сплавов диапазонах. С помощью 50 симуляций была 
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introDuction
Superplastic forming (SPF) is recognized as an advanced 
technology in industries such as aerospace, automotive, 
and medical manufacturing. SPF is a materials process-
ing technique that enables extremely high plastic defor-
mation without failure. It serves as an optimal solution 
for fabricating complex, seamless components. Recent 
reviews [1–3] discuss the increasing relevance of SPF 
across industries and summarize latest advancements.

The principal advantages of superplastic forming 
(SPF) include the capability to manufacture structur-
ally complex components in a single operation and 
the potential for producing parts with larger overall 
dimensions.

Given the costs associated with tooling, materials, 
and energy, as well as the duration of the part manu-
facturing cycle, the application of preliminary computer 
simulation becomes evident. Conducting virtual trials 
helps to optimize process parameters and reduce the 
probability of defects in actual production.

During the virtual design phase, a critical task is 
the prediction of key output parameters, particularly 
the thickness distribution of the final product. To ad-
dress this, the Finite Element Method (FEM) [4–6], 
implemented in specialized CAE software packages, is 
traditionally employed. For instance, using the ANSYS 
system enables the construction of a detailed math-
ematical model for investigation. However, despite 
its high accuracy, detailed finite element modeling is 
characterized by significant computational expense 
and long simulation times, which limits its applicability 
for tasks requiring rapid optimization and the analysis 
of extensive parameter sets. Consequently, a relevant 
and promising development direction is the applica-
tion of machine learning methods as an alternative or 
supplement to the classical FE modeling.

The developed predictive models, trained on limited 
datasets obtained from preliminary high-fidelity FE 
simulations or physical experiments, are capable of 
identifying complex non-linear relationships between 
process input parameters (geometry, material properties, 
pressure regime) and output characteristics. Machine 

learning algorithms, such as artificial neural networks, 
support vector machines, and ensembles of decision 
trees, enable the construction of predictive models 
that are orders of magnitude faster than traditional 
approaches in forecasting key process outcomes. This 
capability establishes the foundation for developing 
digital twins of the manufacturing process.

Machine learning algorithms demonstrate effective-
ness in solving complex metal processing challenges, 
including defect prediction, rheological parameter 
identification, and process optimization [7].

The practical significance of applying machine learn-
ing algorithms is supported by the results of recent 
research. For instance, in the paper [8], the authors 
successfully employed machine learning methods, in-
cluding artificial neural networks, to accurately predict 
the superplastic behavior of new multi-component 
alloys, such as Al-Mg-Fe-Ni-Zr-Sc. In the work [9], the 
authors demonstrate an approach where a multilayer 
feedforward neural network is used to establish correla-
tive relationships between a wide spectrum of process 
parameters chemical composition, modifying additives, 
production methods, heat treatment regimes and the 
complex of mechanical properties in aluminum alloys.

The potential of machine learning is realized not 
only in predicting material behavior but also in sol-
ving applied technological challenges, such as product 
geometry control. A case in point is the research [10], 
where the authors demonstrated that a hybrid PSO-BP 
algorithm, used for predicting а thickness distribution 
in stiffening ribs after SPF, provides higher accuracy 
compared to a standard BP network. This underscores 
the practical value of employing machine learning 
methods for process optimization.

Thus, the analysis of research [7–10] reveals the advan-
tages of integrating machine learning into the optimiza-
tion of the SPF process.

The aim of the research is to develop and verify 
a Gaussian process-based prediction model for forecasting 
the geometric characteristics of a hemisphere produced 
by the SPF process. Primary focus is placed on predict-
ing the thickness in the most critical area the pole of the 

разработана модель прогнозирования геометрических характеристик полусферы, основанная на методе регрессии 
гауссовского процесса с использованием составного ядра. Для оптимизации параметров модели применялся метод 
RandomizedSearchCV. Разработанная модель регрессии гауссовского процесса показала высокую точность, продемон-
стрировав коэффициент детерминации R² > 0,90 на валидационной выборке для всех целевых переменных (толщина 
в полюсе купола, средняя высота, разность высот). Анализ значения среднеквадратичной ошибки подтвердил обо-
бщающую способность и отсутствие переобучения. Проведенное исследование направлено на интеграцию модели 
в систему цифрового двойника для оптимизации технологических параметров в реальном времени. Главная проблема 
масштабирования —  это создание данных для обучения, которое требует больших вычислительных ресурсов.
Ключевые слова: ANSYS; модель прогнозирования; машинное обучение; регрессия гауссовского процесса (GPR); MSE; 
конечно-элементное моделирование; МКЭ; процесс сверхпластической формовки (СПФ)
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hemispherical dome. A dataset for training and validation 
was created based on the results of numerical modeling 
using the finite element method.

initial DataSet formation  
methoDology

To train the machine learning model, the source data 
comprised both experimental data from study [4] and 
the results of numerical modeling of the SPF process in 
ANSYS. The experimental data from [4] represent the 
results of a series of experiments on the superplastic 
forming of hemispherical domes from an aluminum al-
loy. The hemisphere was molded to a height of 50 mm, 
the initial thickness of the blank sheet was 1.2 mm. The 
molding was carried out through a cylindrical die with 
constant pressure of an inert gas. During the research, 
various pressure values were considered, including  
p = 0.29 MPa and p = 0.56 MPa.

In the research, the results of numerical modeling were 
used as the main data source, since conducting technologi-
cal experiments is costly, and data from literary sources 
is insufficient to form a training sample.

To generate initial dataset, 50 solutions were performed 
in ANSYS. For each of the two pressure values [4], a series 
of calculations was performed with various combinations 
of key material parameters K and m included in the su-
perplasticity equation and determining its deformation 
behavior:

σ = K·ξm,
where σ is the flow stress, ξ is the strain rate, K is the 
strength parameter, and m is the strain rate sensitivity 
parameter.

To create combinations of parameters K and m, the 
Latin Hypercube Sampling (LHS) method was used, which 
showed higher efficiency compared to the standard Monte 
Carlo sampling [11].

The initial data in the LHS method used were the rang-
es of parameter values K = 100–300 MPa·sm, m = 0.3–0.7, 
which correspond to typical values for aluminum alloys. 
A sample size of 50 parameter combinations was selected 
as a compromise between model accuracy and compu-
tational cost.

To form the initial data set (training, validation and 
test samples) from the results of numerical modeling, not 
only the final, but also intermediate values of the process 
parameters were used, such as time (t, sec), dome height 
(h, m) and thickness at the pole (s, m) to take into account 
the dynamics of the SPF molding for predicting changes 
in geometric parameters over time during the SPF process.

Dome height was measured at two distinct points: on 
the inner (UY_1) and outer (UY_111) surfaces at the pole 
of the hemispherical dome.

The following values were determined as input 
parameters (features) in the sample:

1) m —  the material’s strain rate sensitivity param-
eter;
2) K —  the material’s strength coefficient, MPa·sm;
3) p —  pressure, MPa;
4) t —  time, sec.

The output parameters (target variables) are:
1) s —  thickness at the pole, m;
2) UY_1 —  height at point 1 (inner surface), m;
3) UY_111 —  height at point 111 (outer surface), m.

finite element moDeling 
of hemiSphere SuperplaStic 

forming uSing anSyS
The simulation of the hemispherical SPF process was 
performed using the ANSYS CAE system. To reduce 
computational cost while maintaining result accuracy, 
a simplified axisymmetric model was used.

The mathematical model was implemented as a 
boundary value problem of creep theory based on the 
Norton model, which describes the dependence of the 
strain rate on stress. According to the chosen model, 
the parameters of the K and m models were adjusted 
to describe the superplastic behavior of the material.

The Latin Hypercube Sampling (LHS) method was 
used to determine the values of the material param-
eters K and m, essential for the model, within ranges 
typical for aluminum alloys.

The following mechanical properties of the alu-
minum alloy were used to determine its elastic cha-
racteristics:

1) Young’s modulus (E) = 70 GPa;
2) Poisson’s ratio (μ) = 0.34.
To implement the numerical model in ANSYS, solid 

models of the blank and the die were created. The blank 
was modeled as a deformable shell, while the cylindrical 
die was defined as a rigid tool that determines the final 
shape of the product. The modeling process began by 
defining their geometric dimensions. The modeling 
scheme is presented below (Fig. 1).

Compliance with the limitations of the student ver-
sion of ANSYS 10 required optimization of the finite 
element mesh. For the blank model, 2112 four-node 
elements were determinate, distributed across four 
layers with 278 elements per layer. In the clamping 
zone, where deformations are insignificant, the mesh 
density was reduced to 25 elements per layer.

The initial mesh configuration (Fig. 2a) and its final 
state (Fig. 2b) after completion of the superplastic for-
ming process through the cylindrical die are presented 
below (Fig. 2).

As can be seen from the Creep Strain Intensity 
distribution, the most critical zone in terms of lo-
calization of thinning is the dome pole (Fig. 3) of the 
hemisphere.
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Selection anD application  
of the machine learning methoD

To develop a predictive model for the geometric charac-
teristics of a hemisphere produced by the SPF process, 
the following machine learning methods were consid-
ered: artificial neural networks [12, 13], random forest 
[14], and Gaussian Process Regression (GPR) [15, 16].

The GPR method was selected for predicting the 
geometric characteristics of the hemisphere for the 
following reasons:

•  It provides not only a point prediction but also 
a variance estimate, enabling the construction of 
confidence intervals and quantitative assessment 
of the model’s reliability, which is crucial in 
engineering applications.

•  Nonlinear dependencies between material 
parameters, process conditions, and the resulting 
geometry are effectively approximated by GPR through 
the selection of an appropriate kernel function.

•  The method demonstrates high accuracy for 
interpolation within the researched parameter range.

•  The algorithm is suitable for training a model in 
conditions of a limited amount of data, which is typical 
for resource-intensive CAE simulations and shows 
more stable performance than deep neural networks.

To model complex relationships in the data, a ker-
nel composed of the following components was se-
lected [17]:

1. Radial Basis Function (RBF) kernel was used to 
model smooth, non-linear dependencies. This is ap-
propriate because the SPF process is continuous, and 
its characteristics evolve smoothly with changes in in-
put parameters.

2. ConstantKernel allows the model to automati-
cally adjust the prediction scale to account for the 
actual variance in the data. This is necessary because 
the target parameters (height, thickness) vary within 
specific ranges.

3. WhiteKernel was incorporated to account for 
random errors inherent in the finite element modeling 
results, which are influenced by mesh density, time 
step, numerical solution methods, and other factors.

The kernels hyperparameters were optimized using 
the RandomizedSearchCV algorithm, which performed 
ten iterations with 2-fold cross-validation for the initial 
exploration of the parameter space.

The following methodology was applied to ensure 
the stability of the model:

1. RobustScaler was applied to scale all input 
features and output target variables to a comparable 
range. Unlike StandardScaler, it is more resistant to 
abnormal values, which are often found in real data 
and CAE simulations due to the use of median and 
interquartile range.

 

Fig. 1. Schematic model of the blank and 
cylindrical Die: ACC’A’ ‒ the Deformable Zone, 
CDD’C’ ‒ the clamping Zone, R 0 ‒ the Die radius, 
r0 ‒ the Die entrance radius, Rс ‒ the blank 
radius, s0 ‒ the initial blank thickness
Source: Complied by the authors.

Fig. 2. finite element mesh: a) in the initial 
configuration, and b) in the final Deformed State
Source: Complied by the authors.
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2. A combination of the alpha parameter (from 
1e-8 to 1e-2) to protect against overfitting and the 
WhiteKernel trainable core so that the algorithm can 
independently estimate the noise level in the data 
during training.

3. The optimizer was configured with multiple 
restarts (n_restarts_optimizer=5). This strategy ini-
tializes the optimization process from different star-
ting points to increase the probability of locating the 
global maximum of the likelihood function.

4. Three-stage data separation: creation of 
a training sample (60% of the total data), a validation 
sample (20%) and a test sample (20%).

5. Cross-validation to assess the generalizing ability 
of the model and its ability to predict on new data.

reSearch reSultS
The effectiveness of the developed Gaussian pro-
cess model was evaluated using standard regres-
sion analysis metrics: Mean Squared Error (MSE) 
and the coefficient of determination (R 2).

These metrics were calculated using the follow-
ing formulas:
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where yi —  is the actual value of the target variable; 
ӯi —  is the value predicted by the model; iy  —  is the 
mean of the actual y values, calculated for the same 
sample used to compute R 2.

The total initial dataset comprised 6250 samples, 
which were partitioned into three subsets:

1) 3750 samples (60%) for training;
2) 1250 samples (20%) for validation;
3) 1250 samples (20%) for testing.
Following hyperparameter optimization, the final 

Gaussian process kernel was determined as:

5.382 × RBF(length_scale =
=  0.145) + WhiteKernel(noise_level = 1e-05).

The results of the evaluation of the forecasting 
model based on training, validation, and test samples 
are shown in Table.

The models performance during each hyperpa-
rameter optimization stage was assessed based on 
the coefficient of determination (R 2) calculated on 
the validation dataset. The model’s final predictive 

Fig. 3. localization of Deformation and thinning  
in the pole of the hemisphere Dome
Source: Complied by the authors.

 

 

 

Table

results of gaussian process prediction for hemispherical geometric characteristics

target variable Dataset mSe, mm2 R 2

Thickness (s) Training 1.44 × 10-5 –

Validation 2.56 × 10-5 0.9996

Test 2.84 × 10-5 –

Average height (havg) Training 0.065 –

Validation 0.112 0.9994

Test 0.124 –

Height difference (Δh) Training 1.44 × 10-5 –

Validation 2.35 × 10-5 0.9996

Test 2.46 × 10-5 –

Source: Complied by the authors.
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ability was evaluated on the test set using the mean 
squared error (MSE).

Prediction accuracy was visualized using scatter plots 
(Figs. 4, 5), comparing actual (x-axis) versus GPR-predicted 
(y-axis) values. The proximity of points to the y = x bisector 
indicates model performance, with separate validation 
and test plots for thickness (Fig. 4) and height (Fig. 5). 
Point color intensity represents absolute error magnitude.

Two GPR prediction plots with confidence intervals 
were generated to visualize model uncertainty:
1) thickness (s) with confidence intervals (Fig. 6a);
2) height UY_1 with confidence intervals (Fig. 6b).

Both plots display time on a logarithmic scale.

DiScuSSion of reSultS
The results presented in Table demonstrate the per-
formance of the GPR model for predicting the geomet-
ric characteristics of a hemisphere after superplastic 
forming. Analysis of the metrics reveals the following:

1. The MSE on the training set is slightly lower 
than on the validation and test sets, which is normal 
and indicates some degree of memorization of the 
training data. The nearly identical MSE values on the 
validation and test sets signify that the model has 
learned the underlying patterns rather than merely 
memorizing noise or specific cases from the training 
set.

Fig. 4. comparison of actual Versus predicted thickness Values, s (mm): a) Validation Set, b) test Set
Source: Complied by the authors.

 
a) b)

Fig. 5. comparison of actual Versus predicted height Values at point UY 111: a) Validation Set; b) test Set
Source: Complied by the authors.
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2. Analysis by target variables thickness (s), 
average height (havg), and height difference (Δh) with 
a validation set score of R 2 ≈ 0.9996, indicates that the 
model explains approximately 99.96% of the variance 
in the target variable.

Analysis of the scatter plots (Figs. 4, 5) demonstrates 
that the GPR model is generally accurate and adequate, 
as evidenced by the dense point cloud along the bisector 
down to a thickness of 1.2 mm, which corresponds to 
the initial blank thickness.

The confidence intervals (Fig. 6) reveal a technologi-
cal window where stable results can be expected. The 
consistent positioning of actual data points within the 
central region of these intervals indicates a controllable 
and robust process.

The wider confidence interval at the process onset 
likely reflects inherent uncertainty during the initial 
stage, potentially associated with challenges in simula-

ting the early phase where plastic deformation just be-
gins to develop in the material. The subsequent narrow-
ing of the interval suggests that the deformation process 
has stabilized, exhibiting highly predictable behavior 
that is well-captured by the selected material model.

concluSionS
The developed Gaussian process model demonstrated 
high accuracy and reliability in predicting the geo metry 
of hemispheres produced by superplastic forming. The 
high values R 2 ≈ 0.9996 and the close agreement be-
tween errors on the validation and test sets confirm 
that the model successfully learned the underlying 
physical relationships without overfitting. Analysis of 
scatter plots and confidence intervals indicates a con-
trollable and robust process, with the model adequ ately 
capturing its physics, particularly during the stable 
deformation phase.
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