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ABSTRACT

Superplastic forming is an advanced technology used in the aerospace and automotive industries, as well as in the medical
sector, for fabricating complex seamless components. However, its application is limited by high costs and the extended
duration of the process. While finite element analysis in CAE systems such as ANSYS provides accurate results, it is
computationally expensive. While finite element analysis performed in CAE systems such as ANSYS provides high-fidelity
results, its computational expense creates a need for fast and accurate predictive models capable of supplementing or
replacing this approach in multi-criteria analysis tasks. Despite the increasing adoption of machine learning across various
disciplines, the development of reliable predictive models for specific geometric characteristics of superplastically formed
components remains an understudied research area. The purpose of this study is to develop and verify a Gaussian process
based model for predicting key geometric parameters of a hemisphere during the superplastic forming. An additional
objective was to create an initial dataset using data generated from numerical simulations. The Latin Hypercube Sampling
method was employed to design the experiment and generate the initial dataset, enabling efficient variation of material
parameters K, m and pressure regime within ranges typical for aluminum alloys. Based on data from 50 numerical simulations,
a predictive model for the hemisphere’s geometric characteristics was developed with Gaussian Process Regression with
a composite kernel. Model hyperparameter optimization was performed using RandomizedSearchCV. The developed
Gaussian Process Regression model demonstrated high accuracy, achieving a coefficient of determination greater than
0.90 on the validation set for all target variables: thickness at the pole, average height, and height difference. Analysis of
the Mean Squared Error confirmed the models generalization capability and absence of overfitting. This research is aimed
at integrating the model into a digital twin system for real-time optimization of process parameters. The main challenge
in scaling this approach is the computational cost associated with generating the required training data.
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OPUTUHANBHASA CTATbA

[ayccoBcKag perpeccus aona NPporH03MpoBaHuUS
reomeTtpum uspenua no aaHHbiM CAE-MopenupoBaHus

0.MN. Tynynoea, I'H. XXono6oBa
®uHaHcoBbIN yHMBepcUuTeT npu MpasuTenbctBe Poccuiickon Menepaumn, Mockea, Poccuiickas @enepaums

AHHOTAUUSA
[lna co3paHus cnoXHbIX 6eCLLIOBHbIX AeTaneit B a3pOKOCMUYECKOM MPOMBbILLIEHHOCTU, aBTOMOBUNIECTPOEHUM U MeanLuHE
nepcrneKTUBHOM TEXHONOMUEN SBASeTCS cBepxnaacTuyeckas Gopmoska. OaHaKo NpUMeHeHUe TEXHONOMMKU OrpaHUYEHO BbICOKOM
CTOMMOCTbIO U LNIUTENBHOCTBIO TEXHONOMMYECKOro npouecca. [puMeHeHne KOHeYHO-3n1eMeHTHOro MoaenmpoBaHus B CAE-
cuctemax Tvna ANSYS paet TOUHbIA pe3ynbTaT, HO BbIYMCIUTENbHO 3aTPaTHOE, MOTOMY BO3HMKAET NOTPEBHOCTb B ObICTPbIX
M TOYHbIX MOLENSAX MPOrHO3MPOBAHMS, CMOCOBHBIX 3aMEHUTL UM AOMNONHUTL AAHHbIM METOA, B 334a4aX MHOrOKpUTepuab-
HOro aHanu3a. HecMoTps Ha pacTyLiee npUMeHeHMe MaLLIMHHOIO 0B6y4eHUs B pasnnyHbIX 061acTaX, NOCTPOEHME HAAEXHbIX
Mogenei NporHo3MpoBaHMS AN KOHKPETHbBIX reEOMETPUYECKMX XapaKTEPUCTUK AeTanei, Nony4YeHHbIX B pe3ynbraTe CBepx-
naacTMyeckor GopMOBKM, OCTaeTCs ManonsyyeHHbIM. Lienbio AaHHOro uccnenoBaHus aBnseTcs paspaboTka U Bepudukaums
MOJEeNM NPOrHO3MPOBAHMS HAa OCHOBE rayCCOBCKOro NpOoLLEecca ANs NpeAckasaHns KNloYeBbiX reOMeTpUYecKMx NapamMeTpoB
nonycdepbl, Noay4aemMon B npouecce ceepxnnactuyeckor hopmMoBku. JononHuTenbHasa 3a4ada coctosna B CO34aHUU UC-
XOAHOro Habopa AaHHbIX HA OCHOBE pe3yNnbTaToB YMCIEHHOro MoaennpoBaHus. [Ing dopmMupoBaHums ncxogHoro Habopa
[aHHbIX UCMOMb30BANCA MeTOf BbIOOPKM NAaTUHCKOIO rmnepkyba, mo3BoAmMBLUNIA SPDEKTUBHO BapblMpOBaTb NapaMeTpbl
mMaTtepuana K, m 1 pexxuM AaBneHus B TMNUYHbIX 4SS aIlOMUHMEBBIX CMIABOB AMana3oHax. C nomoubo 50 cumynaumii 6eina
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§ paspaboTaHa MofieNb NPOrHO3MPOBaHMA rEOMETPUUECKMX XapaKTEPUCTMK nonycdepsbl, OCHOBaHHasA Ha MeTo/le perpeccum

rayCcCoOBCKOro MpoLecca C UCNo/b30BaHMEM COCTaBHOMO sapa. s onTMMuU3aumm napaMeTpoB MOAENN NPUMEHSNCS METOL,
RandomizedSearchCV. Pa3pabotaHHas Moaenb perpeccum raycCoOBCKOro npoLecca nokasana BblICOKYH TOYHOCTb, MPOAEMOH-
CTPUpOBaB Ko3hdULUMEHT aeTepMuHaumm R? > 0,90 Ha BanMaauMOHHOM BbIBOPKE AN BCEX LENEBbIX NEPEMEHHbIX (TONLMHA
B MOJIHOCE KYMNONa, CPeAHSs BbiCOTa, Pa3HOCTb BbICOT). AHaNU3 3HAUYEHUS CpeAHEKBAAPATUYHOM OWKNBKK noaTBepann 060-
bLiatoLLyo cnocobHOCTb U OTCYTCTBME NepeobyyeHus. lpoBeaeHHOe uccneaoBaHMe HANPaBAEHO HA MHTErpaLMI0 Moaenu
B cMCTEMY LUMdPOBOro LBOMHUKA A8 ONTUMM3ALMM TEXHONOTMYECKMX MapaMeTPOB B peasibHOM BpeMeHu. naBHas npobnema
MacwTabMpoBaHMs — 3TO CO34aHME AaHHbIX A48 06yyeHus, KoTopoe TpebyeT 6OMbLUMX BbIYMCIUTENBHBIX PECYPCOB.
Knouesbie cnosa: ANSYS; MoLenb MPOrHO3npoBaHus; MaluMHHOe 0byyeHue; perpeccus rayccosckoro npouecca (GPR); MSE;
KOHeuYHo-3neMeHTHOe MoaenunpoBaHue; MK3; npouecc ceepxnnactnyeckoi dopmosku (CMd)

Ana yumuposanus: Tynynosa 0.11., )Kono6oea I'H. layccoBckas perpeccus ans NporH03upoBaHus reoMeTpun U3penus no
AaHHbiM CAE-mMopenupoBanus. Liugpossbie pewieHus u mexHono2uu uckyccmeeHHozo unmesnnekma. 2025;1(4):43-50. DOI:

10.26794/3033-7097-2025-1-4-43-50

INTRODUCTION
Superplastic forming (SPF) is recognized as an advanced
technology in industries such as aerospace, automotive,
and medical manufacturing. SPF is a materials process-
ing technique that enables extremely high plastic defor-
mation without failure. It serves as an optimal solution
for fabricating complex, seamless components. Recent
reviews [1-3] discuss the increasing relevance of SPF
across industries and summarize latest advancements.

The principal advantages of superplastic forming
(SPF) include the capability to manufacture structur-
ally complex components in a single operation and
the potential for producing parts with larger overall
dimensions.

Given the costs associated with tooling, materials,
and energy, as well as the duration of the part manu-
facturing cycle, the application of preliminary computer
simulation becomes evident. Conducting virtual trials
helps to optimize process parameters and reduce the
probability of defects in actual production.

During the virtual design phase, a critical task is
the prediction of key output parameters, particularly
the thickness distribution of the final product. To ad-
dress this, the Finite Element Method (FEM) [4-6],
implemented in specialized CAE software packages, is
traditionally employed. For instance, using the ANSYS
system enables the construction of a detailed math-
ematical model for investigation. However, despite
its high accuracy, detailed finite element modeling is
characterized by significant computational expense
and long simulation times, which limits its applicability
for tasks requiring rapid optimization and the analysis
of extensive parameter sets. Consequently, a relevant
and promising development direction is the applica-
tion of machine learning methods as an alternative or
supplement to the classical FE modeling.

The developed predictive models, trained on limited
datasets obtained from preliminary high-fidelity FE
simulations or physical experiments, are capable of
identifying complex non-linear relationships between
process input parameters (geometry, material properties,
pressure regime) and output characteristics. Machine

learning algorithms, such as artificial neural networks,
support vector machines, and ensembles of decision
trees, enable the construction of predictive models
that are orders of magnitude faster than traditional
approaches in forecasting key process outcomes. This
capability establishes the foundation for developing
digital twins of the manufacturing process.

Machine learning algorithms demonstrate effective-
ness in solving complex metal processing challenges,
including defect prediction, rheological parameter
identification, and process optimization [7].

The practical significance of applying machine learn-
ing algorithms is supported by the results of recent
research. For instance, in the paper [8], the authors
successfully employed machine learning methods, in-
cluding artificial neural networks, to accurately predict
the superplastic behavior of new multi-component
alloys, such as Al-Mg-Fe-Ni-Zr-Sc. In the work [9], the
authors demonstrate an approach where a multilayer
feedforward neural network is used to establish correla-
tive relationships between a wide spectrum of process
parameters chemical composition, modifying additives,
production methods, heat treatment regimes and the
complex of mechanical properties in aluminum alloys.

The potential of machine learning is realized not
only in predicting material behavior but also in sol-
ving applied technological challenges, such as product
geometry control. A case in point is the research [10],
where the authors demonstrated that a hybrid PSO-BP
algorithm, used for predicting a thickness distribution
in stiffening ribs after SPF, provides higher accuracy
compared to a standard BP network. This underscores
the practical value of employing machine learning
methods for process optimization.

Thus, the analysis of research [7-10] reveals the advan-
tages of integrating machine learning into the optimiza-
tion of the SPF process.

The aim of the research is to develop and verify
a Gaussian process-based prediction model for forecasting
the geometric characteristics of a hemisphere produced
by the SPF process. Primary focus is placed on predict-
ing the thickness in the most critical area the pole of the
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hemispherical dome. A dataset for training and validation
was created based on the results of numerical modeling
using the finite element method.

INITIAL DATASET FORMATION
METHODOLOGY

To train the machine learning model, the source data
comprised both experimental data from study [4] and
the results of numerical modeling of the SPF process in
ANSYS. The experimental data from [4] represent the
results of a series of experiments on the superplastic
forming of hemispherical domes from an aluminum al-
loy. The hemisphere was molded to a height of 50 mm,
the initial thickness of the blank sheet was 1.2 mm. The
molding was carried out through a cylindrical die with
constant pressure of an inert gas. During the research,
various pressure values were considered, including
p=0.29 MPa and p = 0.56 MPa.

In the research, the results of numerical modeling were
used as the main data source, since conducting technologi-
cal experiments is costly, and data from literary sources
is insufficient to form a training sample.

To generate initial dataset, 50 solutions were performed
in ANSYS. For each of the two pressure values [4], a series
of calculations was performed with various combinations
of key material parameters K and m included in the su-
perplasticity equation and determining its deformation
behavior:

o =K-,
where ¢ is the flow stress, & is the strain rate, K is the
strength parameter, and m is the strain rate sensitivity
parameter.

To create combinations of parameters K and m, the
Latin Hypercube Sampling (LHS) method was used, which
showed higher efficiency compared to the standard Monte
Carlo sampling [11].

The initial data in the LHS method used were the rang-
es of parameter values K = 100-300 MPa-s™, m = 0.3-0.7,
which correspond to typical values for aluminum alloys.
A sample size of 50 parameter combinations was selected
as a compromise between model accuracy and compu-
tational cost.

To form the initial data set (training, validation and
test samples) from the results of numerical modeling, not
only the final, but also intermediate values of the process
parameters were used, such as time (¢, sec), dome height
(h, m) and thickness at the pole (s, m) to take into account
the dynamics of the SPF molding for predicting changes
in geometric parameters over time during the SPF process.

Dome height was measured at two distinct points: on
the inner (UY_1) and outer (UY_111) surfaces at the pole
of the hemispherical dome.

The following values were determined as input
parameters (features) in the sample:
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1) m — the material’s strain rate sensitivity param—z’

eter;
2) K — the material’s strength coefficient, MPa-s™;
3) p — pressure, MPa;
4) t— time, sec.
The output parameters (target variables) are:
1) s — thickness at the pole, m;
2) UY_1— height at point 1 (inner surface), m;
3) UY 111 — height at point 111 (outer surface), m.

FINITE ELEMENT MODELING
OF HEMISPHERE SUPERPLASTIC
FORMING USING ANSYS
The simulation of the hemispherical SPF process was
performed using the ANSYS CAE system. To reduce
computational cost while maintaining result accuracy,
a simplified axisymmetric model was used.

The mathematical model was implemented as a
boundary value problem of creep theory based on the
Norton model, which describes the dependence of the
strain rate on stress. According to the chosen model,
the parameters of the K and m models were adjusted
to describe the superplastic behavior of the material.

The Latin Hypercube Sampling (LHS) method was
used to determine the values of the material param-
eters K and m, essential for the model, within ranges
typical for aluminum alloys.

The following mechanical properties of the alu-
minum alloy were used to determine its elastic cha-
racteristics:

1) Young’s modulus (E) = 70 GPa;

2) Poisson’s ratio (n) = 0.34.

To implement the numerical model in ANSYS, solid
models of the blank and the die were created. The blank
was modeled as a deformable shell, while the cylindrical
die was defined as a rigid tool that determines the final
shape of the product. The modeling process began by
defining their geometric dimensions. The modeling
scheme is presented below (Fig. 1).

Compliance with the limitations of the student ver-
sion of ANSYS 10 required optimization of the finite
element mesh. For the blank model, 2112 four-node
elements were determinate, distributed across four
layers with 278 elements per layer. In the clamping
zone, where deformations are insignificant, the mesh
density was reduced to 25 elements per layer.

The initial mesh configuration (Fig. 2a) and its final
state (Fig. 2b) after completion of the superplastic for-
ming process through the cylindrical die are presented
below (Fig. 2).

As can be seen from the Creep Strain Intensity
distribution, the most critical zone in terms of lo-
calization of thinning is the dome pole (Fig. 3) of the

hemisphere.
c @
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Fig. 1. Schematic Model of the Blank and
Cylindrical Die: ACCA’ - the Deformable Zone,
CDDC’ - the Clamping Zone, R | — the Die Radius,
r,— the Die Entrance Radius, Rc - the Blank
Radius, s, - the Initial Blank Thickness

Source: Complied by the authors.
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Fig. 2. Finite Element Mesh: a) in the Initial
Configuration, and b) in the Final Deformed State
Source: Complied by the authors.
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SELECTION AND APPLICATION
OF THE MACHINE LEARNING METHOD
To develop a predictive model for the geometric charac-
teristics of a hemisphere produced by the SPF process,
the following machine learning methods were consid-
ered: artificial neural networks [12, 13], random forest
[14], and Gaussian Process Regression (GPR) [15, 16].

The GPR method was selected for predicting the
geometric characteristics of the hemisphere for the
following reasons:

« It provides not only a point prediction but also
a variance estimate, enabling the construction of
confidence intervals and quantitative assessment
of the model’s reliability, which is crucial in
engineering applications.

o Nonlinear dependencies between material
parameters, process conditions, and the resulting
geometry are effectively approximated by GPR through
the selection of an appropriate kernel function.

o The method demonstrates high accuracy for
interpolation within the researched parameter range.

« The algorithm is suitable for training a model in
conditions of a limited amount of data, which is typical
for resource-intensive CAE simulations and shows
more stable performance than deep neural networks.

To model complex relationships in the data, a ker-
nel composed of the following components was se-
lected [17]:

1. Radial Basis Function (RBF) kernel was used to
model smooth, non-linear dependencies. This is ap-
propriate because the SPF process is continuous, and
its characteristics evolve smoothly with changes in in-
put parameters.

2. ConstantKernel allows the model to automati-
cally adjust the prediction scale to account for the
actual variance in the data. This is necessary because
the target parameters (height, thickness) vary within
specific ranges.

3. WhiteKernel was incorporated to account for
random errors inherent in the finite element modeling
results, which are influenced by mesh density, time
step, numerical solution methods, and other factors.

The kernels hyperparameters were optimized using
the RandomizedSearchCV algorithm, which performed
ten iterations with 2-fold cross-validation for the initial
exploration of the parameter space.

The following methodology was applied to ensure
the stability of the model:

1. RobustScaler was applied to scale all input
features and output target variables to a comparable
range. Unlike StandardScaler, it is more resistant to
abnormal values, which are often found in real data
and CAE simulations due to the use of median and
interquartile range.
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Fig. 3. Localization of Deformation and Thinning
in the Pole of the Hemisphere Dome
Source: Complied by the authors.

2. A combination of the alpha parameter (from
le-8 to le-2) to protect against overfitting and the
WhiteKernel trainable core so that the algorithm can
independently estimate the noise level in the data
during training.

3. The optimizer was configured with multiple
restarts (n_restarts_optimizer=5). This strategy ini-
tializes the optimization process from different star-
ting points to increase the probability of locating the
global maximum of the likelihood function.

4. Three-stage data separation: creation of
a training sample (60% of the total data), a validation
sample (20%) and a test sample (20%).

5. Cross-validation to assess the generalizing ability
of the model and its ability to predict on new data.

RESEARCH RESULTS }

The effectiveness of the developed Gaussian pro-
cess model was evaluated using standard regres-
sion analysis metrics: Mean Squared Error (MSE)
and the coefficient of determination (R?2).

These metrics were calculated using the follow-
ing formulas:

13 -
MSE =—> (v, =5
i=1

R2_1_ zi:zl()’i -, )z
Zi:l(yi _7')

where y, — is the actual value of the target variable;
y,— is the value predicted by the model; Y; — is the
mean of the actual y values, calculated for the same
sample used to compute R2.

The total initial dataset comprised 6250 samples,
which were partitioned into three subsets:

1) 3750 samples (60%) for training;

2) 1250 samples (20%) for validation;

3) 1250 samples (20%) for testing.

Following hyperparameter optimization, the final
Gaussian process kernel was determined as:

)

5.382 x RBF(length_scale =
= (0.145) + WhiteKernel(noise_level = 1e-05).

The results of the evaluation of the forecasting
model based on training, validation, and test samples
are shown in Table.

The models performance during each hyperpa-
rameter optimization stage was assessed based on
the coefficient of determination (R ?) calculated on
the validation dataset. The model’s final predictive

Table

Results of Gaussian Process Prediction for Hemispherical Geometric Characteristics

Thickness (s) Training 1.44 x10° -
Validation 2.56 x 10 0.9996

Test 2.84x10° -

Average height (hm) Training 0.065 -
Validation 0.112 0.9994

Test 0.124 =

Height difference (Ah) Training 1.44 x 10° -
Validation 2.35x10° 0.9996

Test 246 x 10° -

Source: Complied by the authors.
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Fig. 4. Comparison of Actual Versus Predicted Thickness Values, s (mm): a) Validation Set, b) Test Set

Source: Complied by the authors.
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Fig. 5. Comparison of Actual Versus Predicted Height Values at Point UY 111: a) Validation Set; b) Test Set

Source: Complied by the authors.

ability was evaluated on the test set using the mean
squared error (MSE).

Prediction accuracy was visualized using scatter plots
(Figs. 4, 5), comparing actual (x-axis) versus GPR-predicted
(y-axis) values. The proximity of points to the y=x bisector
indicates model performance, with separate validation

and test plots for thickness (Fig. 4) and height (Fig. 5).
Point color intensity represents absolute error magnitude.

Two GPR prediction plots with confidence intervals
were generated to visualize model uncertainty:
1) thickness (s) with confidence intervals (Fig. 6a);
2) height UY I with confidence intervals (Fig. 6b).

Both plots display time on a logarithmic scale.

@

DISCUSSION OF RESULTS

The results presented in Table demonstrate the per-
formance of the GPR model for predicting the geomet-
ric characteristics of a hemisphere after superplastic
forming. Analysis of the metrics reveals the following:

1. The MSE on the training set is slightly lower
than on the validation and test sets, which is normal
and indicates some degree of memorization of the
training data. The nearly identical MSE values on the
validation and test sets signify that the model has
learned the underlying patterns rather than merely
memorizing noise or specific cases from the training
set.
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Fig. 6. GPR Uncertainty Plots for a Test Dataset Instance with Parameters m = 0.471, K = 203.0 MPa-s™,
p = 0.29 MPa: a) Thickness Confidence Interval at Dome Pole; b) Height Confidence Interval at Location UY 1

Source: Complied by the authors.

2. Analysis by target variables thickness (s),
average height (havg), and height difference (Ah) with
a validation set score of R? =~ 0.9996, indicates that the
model explains approximately 99.96% of the variance
in the target variable.

Analysis of the scatter plots (Figs. 4, 5) demonstrates
that the GPR model is generally accurate and adequate,
as evidenced by the dense point cloud along the bisector
down to a thickness of 1.2 mm, which corresponds to
the initial blank thickness.

The confidence intervals (Fig. 6) reveal a technologi-
cal window where stable results can be expected. The
consistent positioning of actual data points within the
central region of these intervals indicates a controllable
and robust process.

The wider confidence interval at the process onset
likely reflects inherent uncertainty during the initial
stage, potentially associated with challenges in simula-

ting the early phase where plastic deformation just be-
gins to develop in the material. The subsequent narrow-
ing of the interval suggests that the deformation process
has stabilized, exhibiting highly predictable behavior
that is well-captured by the selected material model.

CONCLUSIONS

The developed Gaussian process model demonstrated

high accuracy and reliability in predicting the geometry

of hemispheres produced by superplastic forming. The

high values R? = 0.9996 and the close agreement be-
tween errors on the validation and test sets confirm

that the model successfully learned the underlying
physical relationships without overfitting. Analysis of
scatter plots and confidence intervals indicates a con-
trollable and robust process, with the model adequately
capturing its physics, particularly during the stable

deformation phase.
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